- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Alge, Daniel L. (2)
-
Chimene, David (2)
-
Gaharwar, Akhilesh K. (2)
-
Xin, Shangjing (2)
-
Dai, Jing (1)
-
Deo, Kaivalya A. (1)
-
Garza, Jay E. (1)
-
Han, Arum (1)
-
Jain, Abhishek (1)
-
Moebius, Robert M. (1)
-
Pandian, Navaneeth Krishna (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hydrogel microparticles (HMPs) are an emerging bioink that can allow three-dimensional (3D) printing of most soft biomaterials by improving physical support and maintaining biological functions. However, the mechanisms of HMP jamming within printing nozzles and yielding to flow remain underexplored. Here, we present an in-depth investigation via both experimental and computational methods on the HMP dissipation process during printing as a result of (i) external resistance from the printing apparatus and (ii) internal physicochemical properties of HMPs. In general, a small syringe opening, large or polydisperse size of HMPs, and less deformable HMPs induce high resistance and closer HMP packing, which improves printing fidelity and stability due to increased interparticle adhesion. However, smooth extrusion and preserving viability of encapsulated cells require low resistance during printing, which is associated with less shear stress. These findings can be used to improve printability of HMPs and facilitate their broader use in 3D bioprinting.more » « less
-
Xin, Shangjing; Chimene, David; Garza, Jay E.; Gaharwar, Akhilesh K.; Alge, Daniel L. (, Biomaterials Science)Three-dimensional (3D) bioprinting is important in the development of complex tissue structures for tissue engineering and regenerative medicine. However, the materials used for bioprinting, referred to as bioinks, must have a balance between a high viscosity for rapid solidification after extrusion and low shear force for cytocompatibility, which is difficult to achieve. Here, a novel bioink consisting of poly(ethylene glycol) (PEG) microgels prepared via off-stoichiometry thiol–ene click chemistry is introduced. Importantly, the microgel bioink is easily extruded, exhibits excellent stability after printing due to interparticle adhesion forces, and can be photochemically annealed with a second thiol–ene click reaction to confer long-term stability to printed constructs. The modularity of the bioink is also an advantage, as the PEG microgels have highly tunable physicochemical properties. The low force required for extrusion and cytocompatibility of the thiol–ene annealing reaction also permit cell incorporation during printing with high viability, and cells are able to spread and proliferate in the interstitial spaces between the microgels after the constructs have been annealed. Overall, these results indicate that our microgel bioink is a promising and versatile platform that could be leveraged for bioprinting and regenerative manufacturing.more » « less
An official website of the United States government
